Math 31 - Homework 4 Solutions

1. Determine whether each of the following subsets is a subgroup of the given group. If not, state which of the subgroup axioms fails.
(a) The set of real numbers \mathbb{R}, viewed as a subset of the complex numbers \mathbb{C} (under addition).
(b) The set $\pi \mathbb{Q}$ of rational multiples of π, as a subset of \mathbb{R} (under addition).
(c) The set of $n \times n$ matrices with determinant 2 , as a subset of $\mathrm{GL}_{n}(\mathbb{R})$.
(d) The set $\left\{i, m_{1}, m_{2}, m_{3}\right\} \subset D_{3}$ of reflections of the equilateral triangle, along with the identity transformation.

Solution. (a) Yes, \mathbb{R} is a subgroup of \mathbb{C}. The sum of any two real numbers is real, $0 \in \mathbb{R}$, and if $a \in \mathbb{R}$, then $-a \in \mathbb{R}$.
(b) Yes, $\pi \mathbb{Q}$ is a subgroup of \mathbb{R} under addition. The verification is almost identical to the argument that we gave in class to show that \mathbb{Q} is a subgroup of \mathbb{R}.
(c) No, this set is not a subgroup of $\mathrm{GL}_{\mathrm{n}}(\mathbb{R})$, since it is not closed. If A and B both have determinant 2 , then $\operatorname{det}(A B)=4$, so $A B \in \mathrm{GL}_{\mathrm{n}}(\mathbb{R})$. It is also easy to see that this set does not contain the identity matrix, and that none of its elements possess inverses within the set.
(d) No, this is not a subgroup of D_{3}. It contains the identity by definition, and each element is its own inverse, but the set is not closed. For example, we saw that $m_{1} m_{2}=r_{1}$.
2. We proved in class that every subgroup of a cyclic group is cyclic. The following statement is almost the converse of this:
"Let G be a group. If every proper subgroup of G is cyclic, then G is cyclic."
Find a counterexample to the above statement.
Proof. We actually mentioned in class that the Klein 4-group, V_{4}, is a counterexample. All of its proper subgroups are cyclic, but V_{4} is not itself cyclic. Another example would be the dihedral group D_{3}. Every proper subgroup has order 1,2 , or 3 , and is thus cyclic. However, D_{3} is not cyclic. (It is not even abelian.)
3. [Saracino, \#5.10] Prove that any subgroup of an abelian group is abelian.

Proof. Let G be an abelian group, and suppose that $H \leq G$. We need to check that for any $a, b \in H$, we have $a b=b a$. Well, $a, b \in H \subseteq G$, so

$$
a b=b a,
$$

since G is abelian. Therefore, H is abelian as well.
4. [Saracino, \#5.14] Let G be a group. If H and K are subgroups of G, show that $H \cap K$ is also a subgroup of G.

Proof. Suppose that $a, b \in H \cap K$. Then $a, b \in H$, so $a b \in H$ since H is a subgroup. Similarly, $a, b \in K$, so $a b \in K$. Then $a b \in H \cap K$, so $H \cap K$ is closed. Since H and K are both subgroups, $e \in H$ and $e \in K$, hence $e \in H \cap K$. Finally, if $a \in H \cap K$, then $a^{-1} \in H$ and $a^{-1} \in K$, so $a^{-1} \in H \cap K$. Therefore, $H \cap K \leq G$.

Alternatively, we could use the subgroup criterion that we proved in class. Suppose that $a, b \in$ $H \cap K$. Then $a b^{-1} \in H$ and $a b^{-1} \in K$, since H and K are both subgroups, so $a b^{-1} \in H \cap K$. Since a and b are arbitrary elements of $H \cap K$, it follows that $H \cap K \leq G$ by the subgroup criterion.
5. Let r and s be positive integers, and define

$$
H=\{n r+m s: n, m \in \mathbb{Z}\} .
$$

(a) Show that H is a subgroup of \mathbb{Z}.
(b) We saw in class that every subgroup of \mathbb{Z} is cyclic. Therefore, $H=\langle d\rangle$ for some $d \in \mathbb{Z}$. What is this integer d ? Prove that the d you've found is in fact a generator for H.

Proof. (a) We can verify directly that $H \leq \mathbb{Z}$. If $n r+m s, n t+m u \in H$, then

$$
(n r+m s)+(n t+m u)=n(r+t)+m(s+u),
$$

which is again in H. Thus H is closed. Also, $0=n \cdot 0+m \cdot 0 \in H$, and if $n r+m s \in H$, then

$$
-(n r+m s)=n(-r)+m(-s) \in H
$$

so H is indeed a subgroup of \mathbb{Z}.
(b) We claim that H is generated by $d=\operatorname{gcd}(n, m)$. To prove this, we need to check that $H=\langle d\rangle$. First, note that since $d \mid n$ and $d|m, d| n r+m s$ for any $r, s \in \mathbb{Z}$. That is, any element of H is a multiple of d, so

$$
H \subset\langle d\rangle=d \mathbb{Z}
$$

We also need to check that $d \mathbb{Z} \subset H$, and it is enough to show that $d \in H$. (Remember that any subgroup containing d must also contain the cyclic subgroup that it generates.) For this, we just need to remember Bézout's lemma/Extended Euclidean algorithm, which says that there are integers $x, y \in \mathbb{Z}$ such that

$$
n x+m y=\operatorname{gcd}(n, m)=d .
$$

Therefore, $d \in H$, so $H=d \mathbb{Z}$.
6. Let X be a set, and recall that S_{X} is the group consisting of the bijections from S to itself, with the binary operation given by composition of functions. (If X is finite, then S_{X} is just the symmetric group on n letters, where X has n elements.) Given $x_{1} \in X$, define

$$
H=\left\{f \in S_{X}: f\left(x_{1}\right)=x_{1}\right\} .
$$

Show that $H \leq S_{X}$.

Proof. First note that the identity function $i \in S_{X}$ belongs to H, since $i(x)=x$ for all $x \in X$. Also, if $f, g \in H$, then

$$
f \circ g\left(x_{1}\right)=f\left(g\left(x_{1}\right)\right)=f\left(x_{1}\right)=x_{1},
$$

since f and g both fix x_{1}. Therefore, $f \circ g \in H$, so H is closed under composition. Finally, if $f \in S_{X}$, then

$$
f^{-1}\left(x_{1}\right)=f^{-1}\left(f\left(x_{1}\right)\right)=i\left(x_{1}\right)=x_{1},
$$

since $f\left(x_{1}\right)=x_{1}$. Therefore, $f^{-1} \in H$, and H is a subgroup of S_{X}. (This subgroup is called the stabilizer of x_{1}.)
7. [Saracino, \#5.22] Let G be a group. Define

$$
Z(G)=\{a \in G: a x=x a \text { for all } x \in G\} .
$$

In other words, the elements of $Z(G)$ are exactly those which commute with every element of G. Prove that $Z(G)$ is a subgroup of G, called the center of G.

Proof. Suppose that $a, b \in Z(G)$. Then $a x=x a$ and $b x=x b$ for all $x \in G$, and for any $x \in G$ we have

$$
(a b) x=a(b x)=a(x b)=(a x) b=(x a) b=x(a b),
$$

so $a b \in Z(G)$. Therefore, $Z(G)$ is closed. Also, we certainly have $e x=x e=x$ for all $x \in G$, so $e \in Z(G)$. Finally, if $a \in Z(G)$, then

$$
a^{-1} x=\left(\left(a^{-1} x\right)^{-1}\right)^{-1}=\left(x^{-1} a\right)^{-1}=\left(a x^{-1}\right)^{-1}
$$

since a commutes with every element of G. Continuing, we have

$$
\left(a x^{-1}\right)^{-1}=x a^{-1}
$$

so $a^{-1} x=x a^{-1}$, and $a^{-1} \in Z(G)$. Therefore, $Z(G)$ is a subgroup of G.
8. Show that if H and K are subgroups of an abelian group G, then

$$
\{h k: h \in H \text { and } k \in K\}
$$

is a subgroup of G.
Proof. Define

$$
H K=\{h k: h \in H \text { and } k \in K\} .
$$

Let $a, b \in H K$. Then $a=h_{1} k_{1}$ and $b=h_{2} k_{2}$ for some $h_{1}, h_{2} \in H$ and $k_{1}, k_{2} \in K$. Now we have

$$
a b=\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1}\left(k_{1} h_{2}\right) k_{2}=h_{1}\left(h_{2} k_{1}\right) k_{2}=\left(h_{1} h_{2}\right)\left(k_{1} k_{2}\right),
$$

where we have used the fact that G is abelian to interchange h_{2} and k_{1}. Since $H \leq G, h_{1} h_{2} \in H$, and similarly, $k_{1} k_{2} \in K$, so $a b \in H K$. Therefore, $H K$ is closed. Since H and K are both subgroups of $G, e \in H$ and $e \in K$, so $e=e e \in H K$. Finally, suppose that $a=h k \in H K$. Then

$$
a^{-1}=(h k)^{-1}=k^{-1} h^{-1}=h^{-1} k^{-1},
$$

again since G is abelian. Since $h^{-1} \in H$ and $k^{-1} \in K, a^{-1} \in H K$. Therefore, $H K \leq G$.
Note that the fact that G is abelian is crucial here. The result is not true in general for nonabelian groups.
9. [Saracino, \#5.20] We will see in class that if p is a prime number, then the cyclic group \mathbb{Z}_{p} has no proper subgroups as a consequence of Lagrange's theorem. This problem will have you investigate a "converse" to this result.
(a) If G is a finite group which has no proper subgroups (other than $\{e\}$), prove that G must be cyclic.
(b) Extend the result of (a) by showing that if G has no proper subgroups, then G is not only cyclic, but

$$
|G|=p
$$

for some prime number p.
Proof. (a) Suppose that G has no proper subgroups. If $G=\{e\}$, then G is cyclic, so let's assume that G contains more than one element. Let $a \in G$ with $a \neq e$. Then $|a|>1$, and a generates a subgroup $\langle a\rangle$ of G with order greater than 1 . But G contains no proper subgroups, so we must have $\langle a\rangle=G$. That is, a generates G, and G is cyclic.
(b) We have already established that G is cyclic, so we simply need to prove that G has prime order. We saw in class that the subgroups of any finite cyclic group correspond exactly to the divisors of $|G|$. Since G has no proper subgroups other than $e,|G|$ cannot have any proper divisors. In other words, $|G|$ is prime.

Hard

10. [Saracino, $\# 5.25$ and 5.26] Let G be a group, and let H be a subgroup of G.
(a) Let a be some fixed element of G, and define

$$
a H a^{-1}=\left\{a h a^{-1}: h \in H\right\} .
$$

This set is called the conjugate of H by a. Prove that $a H a^{-1}$ is a subgroup of G.
(b) Define the normalizer of H in G to be

$$
N(H)=\left\{a \in G: a H a^{-1}=H\right\}
$$

Prove that $N(H)$ is a subgroup of G.
Proof. To prove (a), we'll use the subgroup criterion. Let $x, y \in a H a^{-1}$. We will show that $x y^{-1} \in a H a^{-1}$. We have $x=a h_{1} a^{-1}$ and $y=a h_{2} a^{-1}$ for some $h_{1}, h_{2} \in H$, so

$$
x y^{-1}=\left(a h_{1} a^{-1}\right)\left(a h_{2} a^{-1}\right)=a\left(h_{1} h_{2}\right) a^{-1} .
$$

Since H is a subgroup, $h_{1} h_{2} \in H$, and it follows that $a h_{1} h_{2} a^{-1} \in a H a^{-1}$. That is, $x y^{-1} \in a H a^{-1}$, so $a H a^{-1}$ is a subgroup of G.
(b) Clearly the identity element of G belongs to $N(H)$, since

$$
e H e^{-1}=\left\{e h e^{-1}: h \in H\right\}=\{h: h \in H\}=H .
$$

Now let $a \in N(H)$. We will show that $a^{-1} \in N(H)$ as well. First observe that if $h \in H$, then we can write

$$
h=a k a^{-1}
$$

for some $k \in H$, since $a H a^{-1}=H$. Then

$$
a^{-1} h a=a^{-1}\left(a k a^{-1}\right) a=k,
$$

which belongs to H. Therefore, $a^{-1} H a \subseteq H$. On the other hand, suppose that $h \in H$. Then we have

$$
h=\left(a^{-1} a\right) h\left(a^{-1} a\right)=a^{-1}\left(a h a^{-1}\right) a .
$$

But $a h a^{-1} \in H$, so it follows that $h \in a^{-1} H a$. Thus $H \subseteq a^{-1} H a$, so $a^{-1} \in N(H)$.
Finally, suppose that $a, b \in N(H)$, so $a H a^{-1}=H$ and $b H b^{-1}=H$. Then for any $h \in H$, we have

$$
(a b) h(a b)^{-1}=a b h b^{-1} a^{-1}=a\left(b h b^{-1}\right) a^{-1} .
$$

Since $b \in N(H), b h b^{-1} \in H$. Moreover, $a \in N(H)$, so $a\left(b h b^{-1}\right) a^{-1} \in H$. Therefore, $(a b) H(a b)^{-1} \subseteq$ H. On the other hand, we need to show that $H \subseteq(a b) H(a b)^{-1}$ as well. Well, if $h \in H$, then $h=a k_{1} a^{-1}$ for some $k \in H$, since $a H a^{-1}=H$. Similarly, we can write $k_{1}=b k_{2} b^{-1}$ for some $k_{2} \in H$, since $b \in N(H)$. Therefore,

$$
h=a k_{1} a^{-1}=a\left(b k_{2} b^{-1}\right) a^{-1}=(a b) k_{2}(a b)^{-1},
$$

so $h \in(a b) H(a b)^{-1}$. Thus $H \subseteq(a b) H(a b)^{-1}$, and $a b \in N(H)$. It follows that $N(H) \leq G$.

